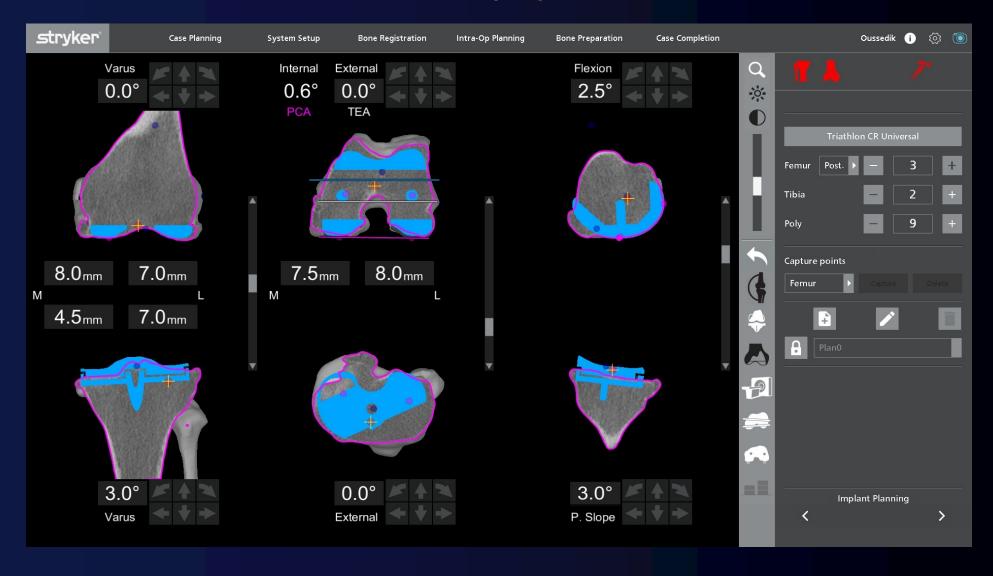
Advanced Knee Surgery 2025

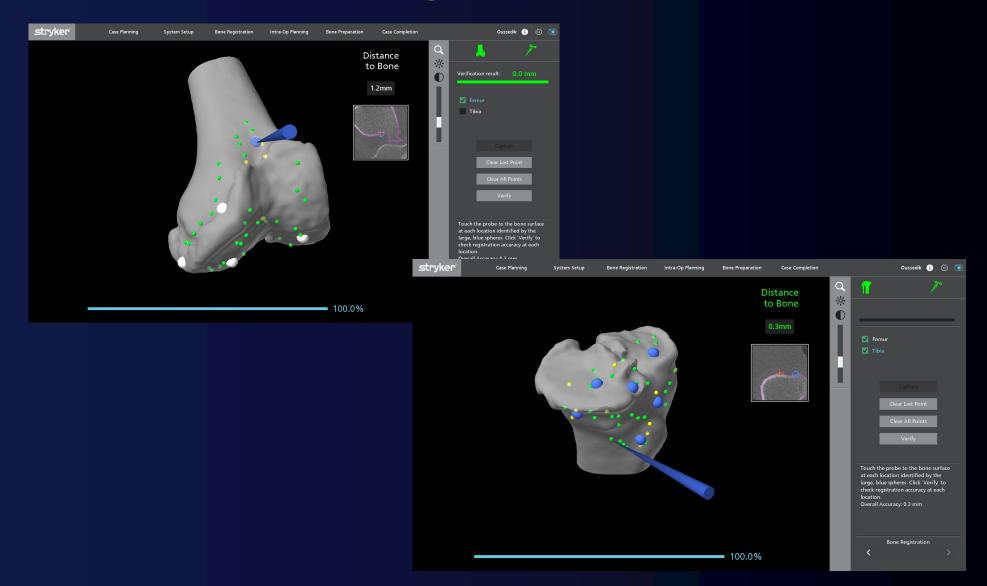
Robotics: Imaged based is mandatory

Sam Oussedik

Consultant Orthopaedic Surgeon & Dept Head, UCLH Hon. Assoc. Prof. UCL


Pre-op CT

Pre-op plan


Pre-op plan

Registration

Registration

Balancing

Mako Case Information

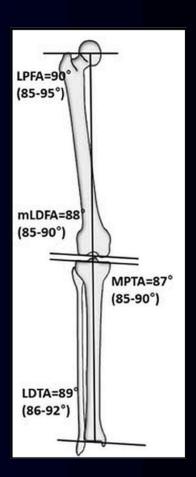
	Component Pla	anning			Anatomical Information				
	Sawblade	Narrow	Femoral rotations		As-scanned alignment		Joint line		
General	Selected plan	Plan0	Coronal Transverse	0.5° varus 2.0° external	Coronal Transverse	10.0° valgus 18.4° external	LDFA MPTA	91.6° 83.4°	
Osteophytes	Sizes		Sagittal	3.0° flexion	Sagittal	10.3° extension			
Releases	Baseplate	3 2 9 mm	Femoral resections Distal	Medial Lateral 7.5 mm 6.5 mm	Anatomic axes AA to MA coronal	6.3° valgus	aHKA JLO	8.2° varus 175.0°	
Cuts & Implants	Planned alignment	3.5° varus	Posterior Tibial rotations	8.5 mm 7.0 mm	AA to MA sagittal PCA to TEA	2.7° flexion 0.6° internal	Femur JLA Tibia JLA	1.6° varus 6.6° varus	
Timer Plan & Anatomy	Planned laxity (IA) Extension Flexion	Medial Lateral 1.0 mm 1.0 mm 1.0 mm 1.0 mm	Coronal Transverse Sagittal	3.0° varus 0.0° external 6.5° p. slope	Posterior slope Medial Lateral	7.3° p.slope 11.0° p.slope	MEC to bone MEC to implant	23.0 mm 24.0 mm	
			Tibial resections Proximal	Medial Lateral 3.5 mm 6.5 mm	amonte related to anote my				

View values related to planned implant component and measurements related to anatomy

Close

Joint line

LDFA 91.6°


MPTA 83.4°

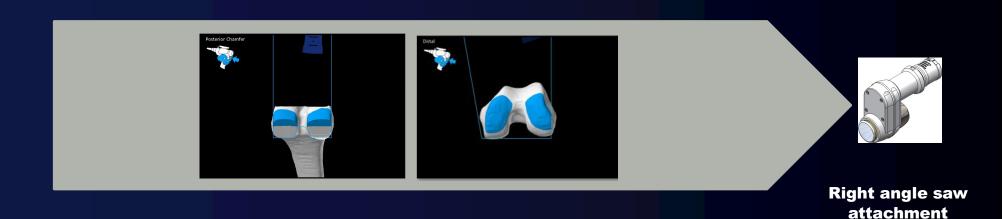
aHKA 8.2° varus

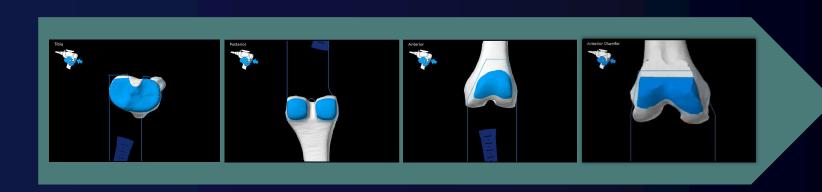
JLO 175.0°

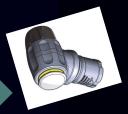
Femur JLA 1.6° varus

Tibia JLA 6.6° varus

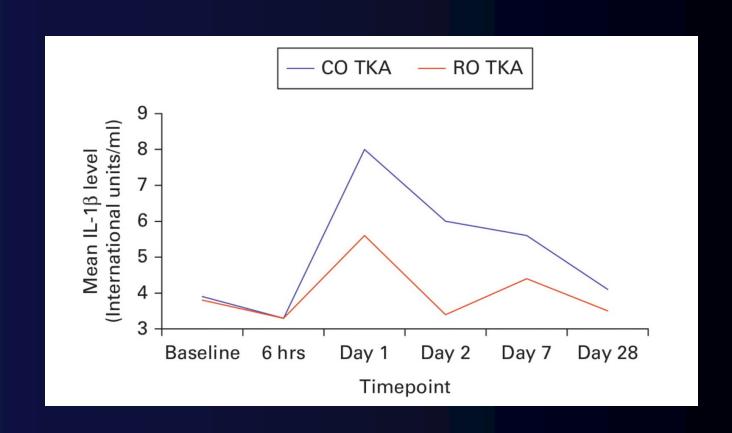
Balancing

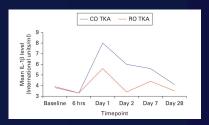

Balancing

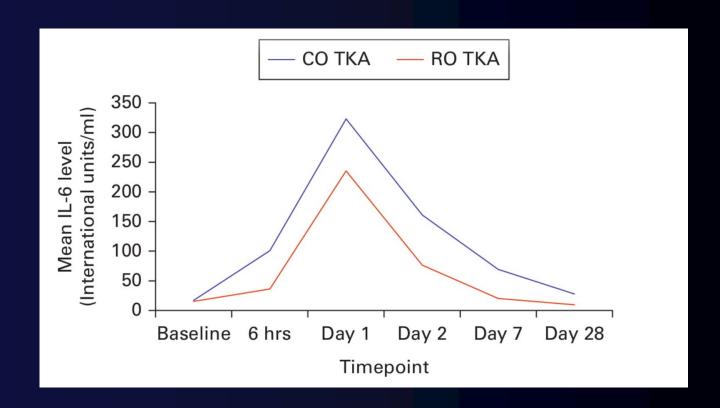



Bone resection

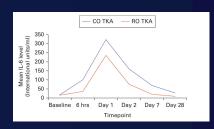
Haptic guided bone prep

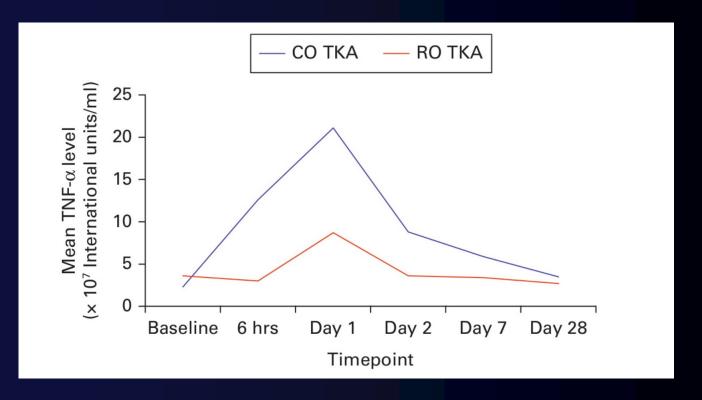


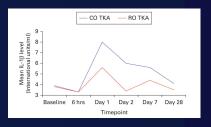

Sagittal saw attachment

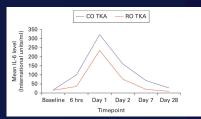

KNEE

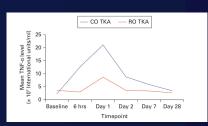
A prospective randomized controlled trial comparing the systemic inflammatory response in conventional jig-based total knee arthroplasty versus robotic-arm assisted total knee arthroplasty

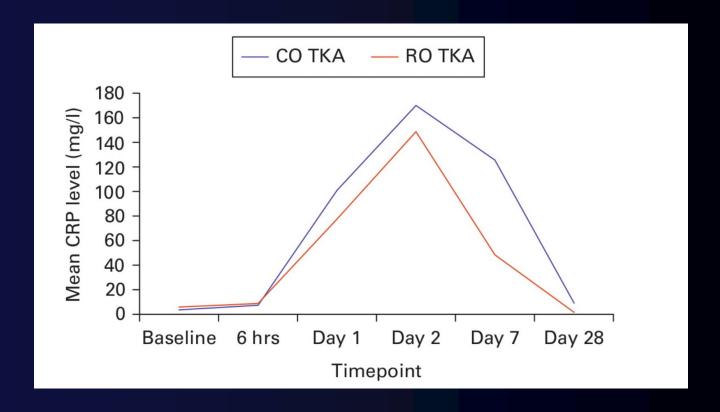

Babar Kayani, Jenni Tahmassebi, Atif Ayuob, Sujith Konan, Sam Oussedik, Fares S. Haddad

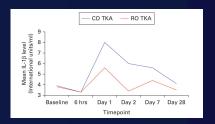


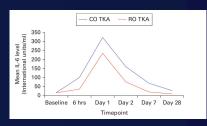


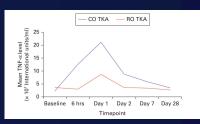


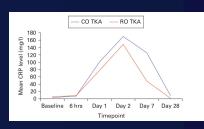

CO TKA RO TKA RO TKA RO TKA Baseline 6 hrs Day 1 Day 2 Day 7 Day 28 Timepoint

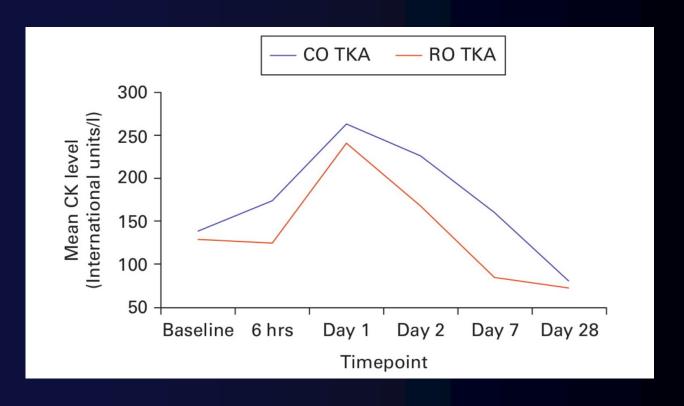


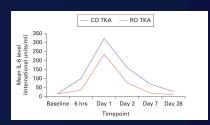


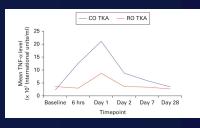


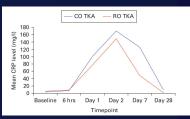


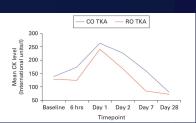


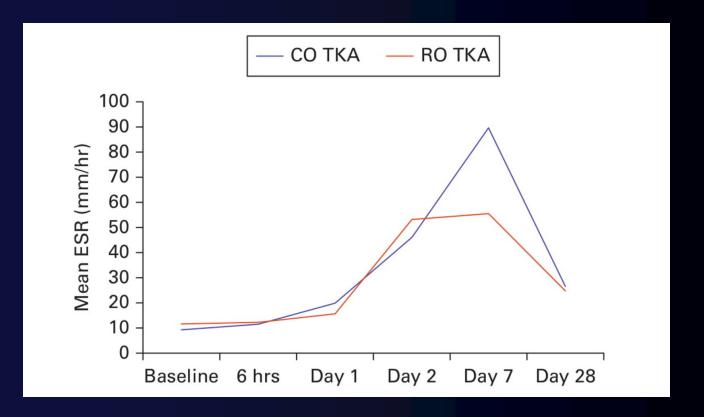












Trial

KNEE

Length of stay and discharge dispositions following robotic armassisted total knee arthroplasty and unicompartmental knee arthroplasty versus conventional technique and predictors of delayed discharge

Aims

A. Fontalis, R. D. Raj, I. C. Haddad, C. Donovan, R. Plastow, S. Oussedik, A. Gabr, F. S. Haddad

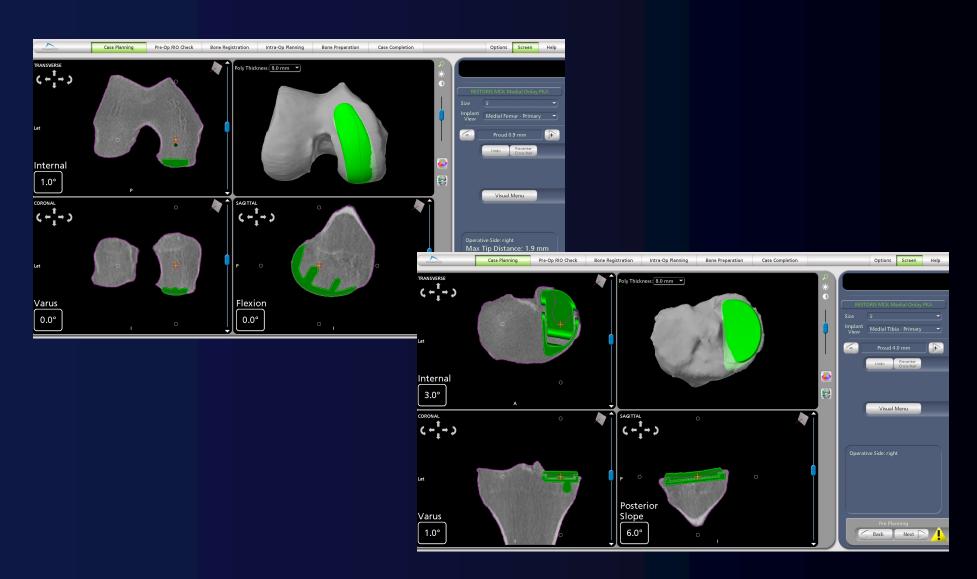
In-hospital length of stay (LOS) and discharge dispositions following arthroplasty could act as surrogate measures for improvement in patient pathways, and have major cost saving implications for healthcare providers. With the ever-growing adoption of robotic technology in arthroplasty, it is imperative to evaluate its impact on LOS. The objectives of this study were to compare LOS and discharge dispositions following robotic arm-assisted total knee arthroplasty (RO TKA) and unicompartmental arthroplasty (RO UKA) versus conventional technique (CO TKA and UKA).

STUDY PROTOCOL

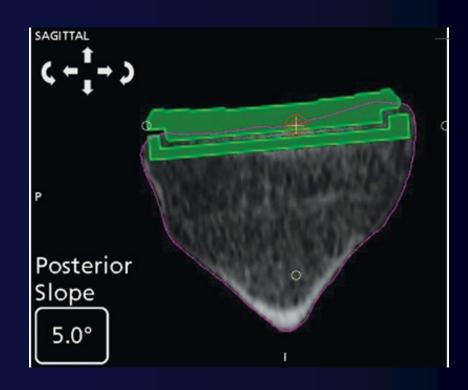
Open Access

A prospective double-blinded randomised control trial comparing robotic arm-assisted functionally aligned total knee arthroplasty versus robotic arm-assisted mechanically aligned total knee arthroplasty

Babar Kayani^{*}, Sujith Konan, Jenni Tahmassebi, Sam Oussedik, Peter D. Moriarty and Fares S. Haddad

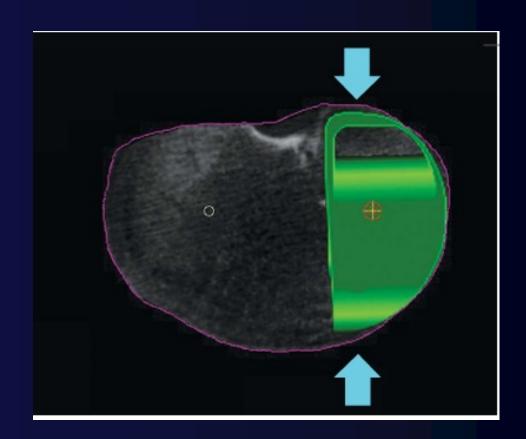


Partial Knee Replacement



Tibial slope

AP sizing

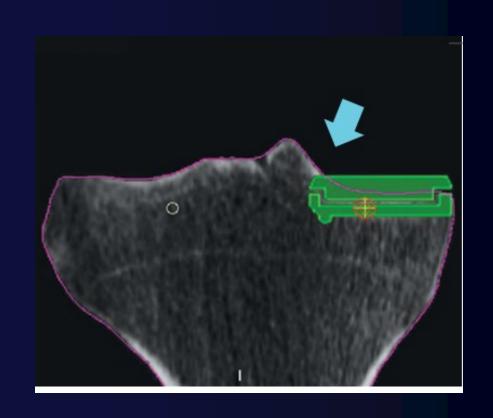


Tibial slope

AP sizing

Coverage

Rotation

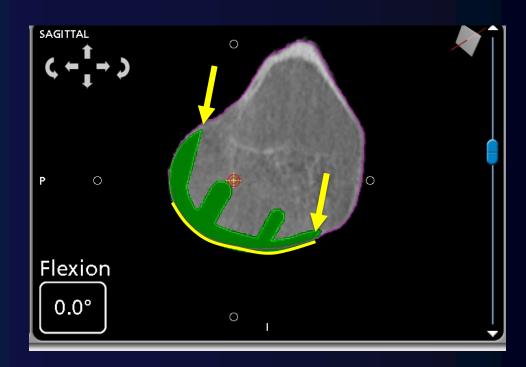


Tibial slope

AP sizing

Coverage

Rotation

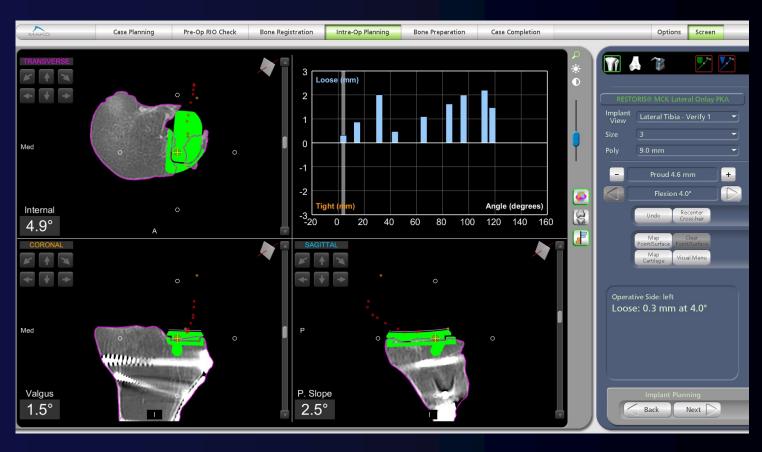

M/L sizing

Eminence resection

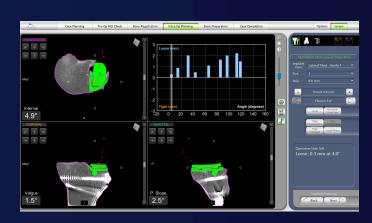
Medial overhang

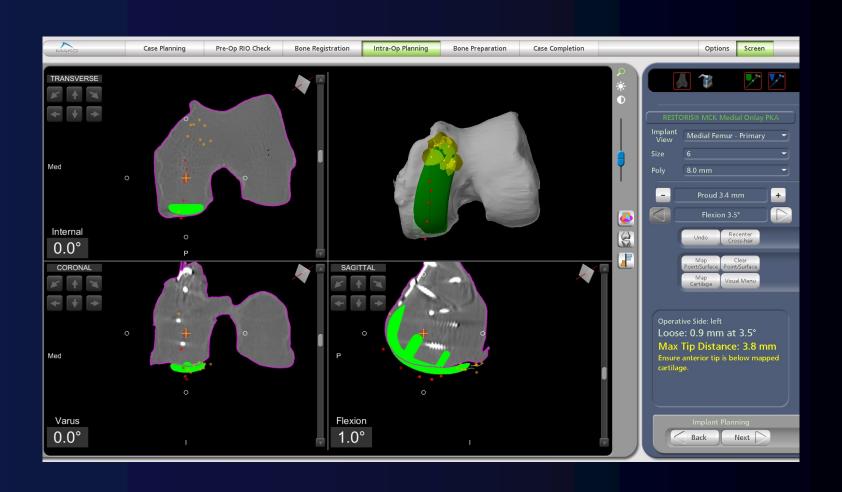
Femoral curvature

Posterior overhang



Anterior proudness



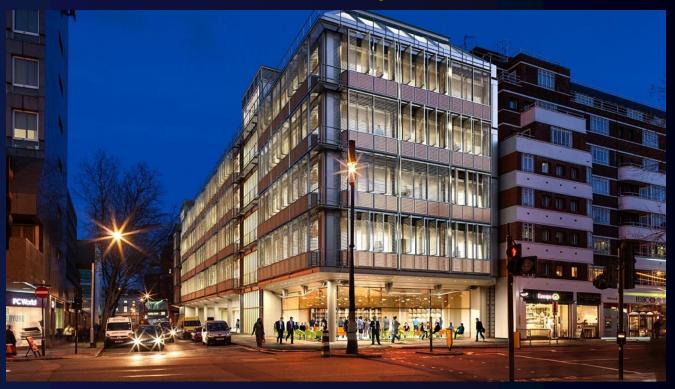


		Age at		Time since primary							
Brand ¹	N	primary Median (IQR)	Male (%)	1 year	3 years	5 years	10 years	15 years	20 years		
All unicompartmental knee replacements	184,947	64 (57 to 71)	51	0.95 (0.91-1.00)	3.36 (3.27-3.45)	5.14 (5.03-5.25)	9.88 (9.70-10.06)	15.23 (14.93-15.53)	21.20 (20.27-22.17)		
Unicondylar											
AMC/Uniglide[M. Fem:M.Tib]	2,762	64 (57 to 71)	52	2.43 (1.92-3.08)	6.20 (5.35-7.16)	7.92 (6.96-8.99)	12.77 (11.53-14.13)	17.99 (16.29-19.85)			
Journey Uni Oxinium[M.Fem] Journey Uni[M.Tib]	2,009	64 (57 to 71)	55	1.38 (0.94-2.02)	2.83 (2.14-3.73)	4.09 (3.20-5.23)	7.70 (5.66-10.45)				
MG Uni[M.Fem:M.Tib]	1,959	63 (57 to 70)	57	0.77 (0.46-1.27)	3.91 (3.13-4.87)	5.92 (4.95-7.07)	10.15 (8.86-11.62)	13.59 (12.06-15.29)	16.05 (14.05-18.30)		
Oxford Cementless Partial Knee[L.Fem] Oxford Partial Knee[L. Tib]	1,191	68 (57 to 76)	36	1.24 (0.74-2.09)	3.20 (2.28-4.47)	5.31 (3.98-7.06)	11.58 (8.29-16.05)				
Oxford Cementless Partial Knee[M.Fem:M. Tib]	38,958	65 (58 to 72)	56	1.13 (1.03-1.24)	2.19 (2.03-2.35)	3.09 (2.89-3.30)	6.18 (5.71-6.68)	11.54 (8.58-15.43)			
Oxford Cementless Partial Knee[M.Fem] Oxford Partial Knee[M. Tib]	1,246	66 (59 to 73)	53	1.32 (0.81-2.15)	3.42 (2.51-4.65)	4.86 (3.73-6.32)	8.07 (6.46-10.08)	12.18 (9.76-15.15)			
Oxford Single Peg Cemented Partial Knee[M.Fem]Oxford Partial Knee[M.Tib]	41,953	64 (58 to 71)	52	1.16 (1.07-1.27)	4.31 (4.12-4.51)	6.40 (6.17-6.64)	11.39 (11.08-11.72)	16.55 (16.12-16.99)	22.69 (21.44-24.00)		
Oxford Twin Peg Cemented Partial Knee[M.Fem]Oxford Partial Knee[M.Tib]	6,156	65 (57 to 72)	50	0.62 (0.45-0.86)	2.29 (1.92-2.72)	3.73 (3.23-4.30)	6.82 (5.98-7.79)	11.81 (9.84-14.15)			
Persona Partial Knee[M.Fem:M.Tib]	7,821	65 (58 to 72)	58	0.36 (0.24-0.54)	1.50 (1.16-1.93)	1.98 (1.55-2.53)					
*Physica ZUK[L.Fem:L. Tib]	1,349	63 (54 to 72)	41	0.83 (0.45-1.54)	1.43 (0.87-2.33)	2.71 (1.84-3.98)	5.25 (3.63-7.56)	<i>6.48 (4.36-9.59)</i>			
*Physica ZUK[M. Fem:M.Tib]	28,796	64 (57 to 71)	56	0.30 (0.24-0.37)	1.60 (1.44-1.77)	2.52 (2.30-2.75)	5.27 (4.84-5.72)	8.56 (7.52-9.73)			
Preservation[M.Fem:M. Tib]	1,418	63 (56 to 70)	56	2.41 (1.72-3.35)	8.28 (6.95-9.85)	11.57 (10.00-13.37)	17.67 (15.74-19.81)	22.91 (20.70-25.31)	28.88 (25.52-32.58)		
Restoris[M.Fem:M.Tib]	2,919	65 (59 to 73)	60	0.39 (0.21-0.73)	1.70 (1.15-2.51)	2.24 (1.42-3.52)					
Sigma HP (Uni)[M.Fem] Sigma HP[M.Tib]	16,301	64 (57 to 71)	58	0.59 (0.48-0.73)	2.47 (2.22-2.74)	3.57 (3.26-3.91)	6.23 (5.71-6.79)	8.31 (6.97-9.89)			
Triathlon Uni[M.Fem] Triathlon[M.Tib]	2,055	63 (56 to 70)	57	1.00 (0.64-1.56)	3.68 (2.88-4.70)	5.79 (4.71-7.10)	8.66 (7.11-10.54)				

Tib]	1,410	(56 to 70)	50	(1.72-3.35)	(6.95-9.85)	(10.00-13.37)	(15.74-19.81)	(20.70-25.31)	(25.52-32.58)
Restoris[M.Fem:M.Tib]	2,919	65 (59 to 73)	60	0.39 (0.21-0.73)	1.70 (1.15-2.51)	2.24 (1.42-3.52)			
Sigma HP (Uni)[M.Fem] Sigma HP[M.Tib]	16,301	64 (57 to 71)	58	0.59 (0.48-0.73)	2.47 (2.22-2.74)	3.57 (3.26-3.91)	6.23 (5.71-6.79)	8.31 (6.97-9.89)	
Triathlon Uni[M.Fem] Triathlon[M.Tib]	2,055	63 (56 to 70)	57	1.00 (0.64-1.56)	3.68 (2.88-4.70)	5.79 (4.71-7.10)	8.66 (7.11-10.54)		

Conclusion

- Image based robotics offers state of the art precision
- Safety of haptic boundaries offers confidence
- Anatomical knowledge can aid decision making in balancing
- Step-change in real world UKA survivorship
- Given the choice, what would you use?



Thank you

Elective Orthopaedic Centre @ Grafton Way Building, UCLH